

Coaxial Fixed Attenuator

RFH0606ND500-D

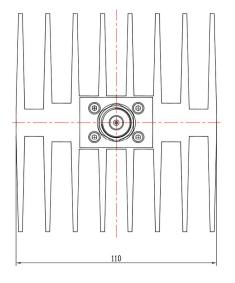
DC-6 GHz, 6 dB, 500 Watts, N, Unidirectional

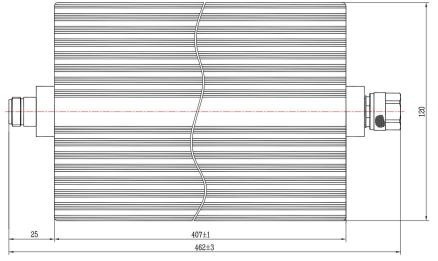
Rev 1

Electrical

Impedance	50 ohm	
Frequency Range	DC-6 GHz	
VSWR	1.25 max	
Input Avg Power	500W@ 25 $^{\circ}$ C ambient, derating linearly to 50W at 100 $^{\circ}$ C	
Peak Power	5kW (5 micro-sec pulse width, 2% duty cycle)	
Direction	Unidirectional, N male input, N female output (other configurations available)	

Attenuation(dB)	6
Accuracy(dB)	+2.0/-0.6


Mechanical


Connector Body	Ternary alloy plated brass
Heat Sink	Black anodized aluminum
Center Contact	Gold plated beryllium copper/brass
Net Weight	About 5900 g

Environmental

Operating Temperature	-55℃ to 100℃
Storage Temperature	-55℃ to 125℃
RoHS	Compliant
Temperature Coefficient	<0.0004 dB/dB/℃

Dimensions(mm)

Notes

- 1. Always pay attention to the direction of attenuators.
- 2.To maintain best performance, recommended to use fan to keep the case temperature under 85° C.
- 3.Customized dB values, outlines and optimal accuracy/VSWR available.

Model Description

RFH0606N<u>D</u>500-D

1.Code for connector configuration:

A=female for two ends; B=male for two ends

C=female for input and male for output;

D=male for input and female for output.